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Abstract. The derivation of high density series expansions for the percolation probability 
and mean cluster size in random site and bond mixtures on a two-dimensional lattice is 
described. New data are given for the triangular, simple quadratic and honeycomb lattices. 

t Introduction 

In this paper we describe the derivation of series expansions required for a study of 
random mixtures of sites (or bonds)? in the high density region on a two-dimensional 
lattice. We have given a general introduction in a previous paper (Sykes and Glen 1976, 
tobe referred to as I) which described the elementary practical theory of the derivation 
ofseiesexpansions valid in the low density region p < pc. The mean number of clusters 
K was there expanded in the form: 

We use K(p, q)  to denote the formal expansion in p and q that results from application 
ofthe perimeter method. (Since p and q are dependent variables, other expansions can 
beobtained with p and q as arguments; we follow Sykes and Essam (1964) in adopting 
he above convention.) In the low density region all the clusters are finite; the formal 
relation 

e?resseS the probability that a site will be black as a sum over the expectations that it 
fl belong to a black cluster of a particular size. If the restriction p < Pc is relaxed, the 
sum (1.2) becomes the expectation that a site will belong to a finite cluster of black sites. 

approaches unity almost all the black sites will belong to one cluster: the infinite 
‘hr. we denote the density of black sites that belong to an infinite cluster by pm, and 
to a finite cluster by p f .  Then 

P = P f  + P m  P’PC 

P‘Pf  P <Pc. 

715 
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m e  percoladon probability is defined as the probability that a black site &longs to the 
infinite cluster: 

(1.5) 
P(p)  = POJP = 1 - P f l P .  

n e  method proposed by Domb (1959) for the study of the high density region restson 
the observation that the relation (1.2) can be made universally valid by simplyMting 

S i n e  each (n,) is positive and pf < 1 , the infinite summation on the right-hand $ide is 
convergent. 

In the low density region, the natural arrangement Of the environmental datais the 
site grouping or p grouping (1.1). In the high density region the natural arrangement is 
a (site) perimeter grouping or 4 grouping: 

We notice a formal analogy between these two data groupings and the two data 
groupings that arise in the Ising model of a ferromagnet (Sykes et a1 1965, 
1973 a,b,c,d,e, 1975 a,b,c, to be referred to as I* to IX*): the p grouping polynomials 
correspond to the p grouping or ordering of the data by the number of overtumedspins 
regarded as black sites (and denoted by L(z)  in II*); the 4 grouping polynomials 
correspond to the z grouping or ordering of the data by the number of energy linkages 
between overturned spins and ordered spins (and denbted by $(p) in 11"). The second 
analogy is not exact because the Ising perimeter (the power of 2) and the site perimeter 
(the power of 4) are not identical, but we have found the analogy a useful one andmade 
it the basis of our treatment. 

The specification of clusters contributing to successive p grouped polynomials (1.1) 
is a practically convenient one: the number of sites; the specification of clusters 
contributing to successive q grouped polynomials (1.7) is much less convenient: the site 
perimeter. 

TO derive 4 grouped polynomials we have modified many of the graph theoretic 
methods developed earlier for the Ising problem and described in I*-IX* (es@@ 
IV* and WI*). The optimum method in each case is dictated by the StructWof* 
lattice studied. In 80 2 and 3 we describe the methods we have used for h site and 
bond problem on the triangular lattice as these examples illustrate the general nameof 
the problems encountered. To obtain a useful amount of data for anylattiaitisusuaUy 
necessary to make a detailed configurational study; for this purpose we have drawn 
extensively on data collected for earlier studies of the Ising model. 

The 4 grouped polynomials (1.7) are the source of high density expansions in pwea 
of 4 which are obtained by making the substitution p = 1 - 4. For example, On the 
triangular lattice: 

K(p ,  4 )  = pq6 + 3p2q8 + 2p3q9 + . . . (1.8) 

and using (1.6) and substituting after the formal differentiation: 
(1.9) 

p f = p  a K / a p = q 6 - q 7 + 6 q 8 - 6 q 9 + .  . . 
and on substitution in (1.5) the percolation probability is 

P ( ~ ) = l - q ~ - 6 q ~ + O ( q ' ~ ) .  .. . (1.10) 
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At high densities, the mean size of finite clusters, defined as the mean number of black 
sites connected to any black site that is not in the infinite cluster, is given by a 

of (2.10) of I to be 

(1.11) 

we give the expansions for P(p)  and S ( p )  we have derived for the more usual 
mdjensional lattices in the appendix. The analysis of these data is given in a 
"panion paper (Sykes et a1 1976). 

2. Site problem for the tiiangular lattice 

~yregrouping the perimeter polynomials 0, through OI4 b v e n  in the appendix of I) 
weobtain the expansion of the key distribution function K(p, q )  as a q grouping through 
66: 
K(p, 4) =c &(p)4' 

S 

= (p )q6+  (3p2)q8 + (2p3)q9 + (9p3 +3p4)q'O+ (12p4 +6p 5 )q 11 

+(29p4 + 21p5 + 14p6+p7)q12 + (66p5+43p6+30p7 +6p 8 )4 13 

+(93p5+ 153p6+ 11 lp7+ 69p8 + 27p9 +3p10)q14 
+ (298p6+366p7+291p8 + 166p9+86p1O+ 24p" + 2p 12 )q 15 

+ (30$p6 + 840p7 + 957p8 + 803p9+ 492p" +255p1' + 117p" +27pI3 

(2.1) 14 16 +3p )4 +.... 
Itisto be noticed that the only contributions the polynomials D12, O13,014 make to the 
lastcoefficient 616 in (2.1) correspond to a very few clusters of 12, 13 and 14 sites with 
site perheter as low as 16; thus only a very small fraction of the summary of the 
en*Omental situation provided by the 0, is made use of at first in the regrouping. 
%s inefficient use of p grouped polynomials in the derivation of q grouped polyno- 
mials is closely analogous to that which occurs in forming the z grouped Ising 
PlPomials from the corresponding p grouped polynomials. For the Ising model, the p 
@'ouPmg is essentially an area grouping, the area being measured by the number of 
Overturned spins (the power of p )  and the energy of a cluster of n overtumed spins 
?OtexCeed 3n; the length of the p grouped polynomials therefore increases at most 

with n. In contrast the z grouping is an energy grouping and the area of a 
'nfiguration with m energy linkages (the power of 2) increases as m2; the length of the 
z~ou~dPolynomials increases quadratically. Likewise in the present context, the site 
Penmeter of a cluster of n sites cannot exceed 2n +4 and the growth of the p grouped 
p ' ' p o ~ ~ S  is therefore at most linear with n. In contrast the site area of a cluster of !* Perimeter m increases as m2; the length of the q grouped polynomials 

Quadratically. 
To make the analogy more specific, we contrast the two polynomials 

512 =29p4+ 21p5 -t 14p6+p7 

$9 = 1 9$p3 + 5p4 + 2 1p5 + 14p6 + p7. 
(2.2) 

(2.3) 
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In (2.3) I,b9 is the corresponding z grouped polynomial for the triangular ]attitice taken 
from IF. The coefficients of the higher powers of p and p are seen to be identical; ifwe 
delete from I,b9 contributions from clusters with more than one component and 
substitute for (2.3) the connected z grouping 

= 29p4+21p5+ 14p6+ p7 

the identity is complete. However the next polynomial 

I,& = 66p5 +42p6 +30p7+6p8 

is not identical with 

(2.4) 

&3=66p5+43p6+30p7+6p8 (2.6) 
but differs only in the coefficient of p6. The source of small discrepancies be 
explained on the basis of the graph theoretic description we have given of he ,j 
polynomials in VIII*. The higher powers of p are there shown to correspond to 
connected and essentially convex clusters. The highest power of p always corresponds 
to an absolutely convex cluster. For this convex region (characterized by near maxi- 
mum powers of p and defined more precisely in VIII*) there exists a simple relation 
between the site perimeter (a) and the Ising perimeter (w =power of 2'). From 
theorem (3.3) of VIII*: 

a = w + 3  (2.7) 
and this relation can be used to transform the result (2.5) of VIII* for the general 
pattern of the convex end of the i,b polynomials into the general pattern for the convex 
end of ,$' polynomials: 

t6m = p3mz-3m+l (1 + 14p-' + 8 7 ~ - ~  + . . .) 
<6m+l =-P 3m2-2m (6+42~- '+216p-~+ .  . .) 
& m + 2 = P  3mz-m (3+27~- '+147p-~+ .  . .) 

56m+3 =p3"*(2+24p-'+ 1 2 8 ~ - ~ + .  . .) 
&m+4 =p3m2+"(3+27p-'+147p-2+. . .) 
66m+5 = p 3m2+2m (6+42~- '+216p-~+.  . .). 

(2.8) 

Following closely the ideas of VIII*, we define an (essentially) convex clusters One 

(2.9) 
for which (2.7) holds. The more general result 

aso+3 

enables the concavity of a cluster to be characterized by writing 

(T = 0 + 3  -s. (2.101 

We adopt the value of 6 as a measure of the concavity and describe a 
8-concave. With this convention, clusters that contribute to tcr divide into 

as 

(a )  convex clusters in the Ising polynomial I)C,-~; 
(b) 8 concave clusters in the king pol~omials I,bC,-3+s for all S > 0. 
The enumeration of these two classes corresponds to two operations 

deletion of concave terms from $C,-3; for (b)  the selection of all the requlredmDaYe order 
terms in all &-3+,. The second task involves an inspection of the I,bc in ascen*' 

for (8)  
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and this is inconvenient as the m " t  of configurational information increases rapidly 
with each new +' while the m " t  of significant information in the present context 
becomes very small. We therefore recast the problem in such a way that the required 
information can be found from an inspection of all $: with s < U - 3. The method is 
based on a classification Of the concavities that occur first in practice. 

As the power of p (of ,U) declines from the absolutely convex end we can define a first 
zone of mild concavity where departures from concavity correspond to single holes and 
faults of the type illustrated in figure 1. If the objective is tu, clusters with a concavity of 

Figure 1. Concavities that characterize the first zone of (mild) concavity in $:. (a )  Simple 
hole of unit area (2-concave). ( b )  An f fault (l-concave). 0, Rogue site or spin. 

either type must be deleted from $:-3 and clusters with a concavity of type (a)  selected 
from those with a concavity of type (b)  from +:-2. The failure of the equality in 
(2.7) is due to the presence of a perimeter site (or spin) marked in the figure with an open 
circle and which we call a rogue site. If, for any cluster with a concavity of type (a), the 
rogue site is removed by adding an extra site to the cluster in its place, the new cluster so 
formed must lie in +L-3 (or I&+): that is one below rather than two above originally. In 
other words the holes that occur in can be regarded as lying in I ,~C,-~ and found by 
an examination of this. The task is further simplified by the fact that the presence of the 
hole (a )  implies that the new in-filled cluster is all the more likely to be convex; the 
number of possible holes that lie in $",4 can then be determined by using the formula 
for the number of internal points given in VIII" (equation (2.4)). 

If anf fault (b )  occurs in +:then, on adding an extra site to the cluster to suppress the 
rogue site, a hole of type ( a )  will result (in and a new rogue site will be created; on 
in-filling again we obtain a cluster in +:-z. Since for 5, we re6ireffaults in $f2 we can 
instead examine $t-4 for external obtuse angles in the contour. 

In summary, the convex terms required for 5, lie in $C,-3; the details of clusters that 
constitute the first zone of mild concavity and contribute to 5, can be obtained by an 
analysis of $;-+ 

A second zone of somewhat more severe concavity we define by the presence of the 
concavities illustrated in figure 2. (This schematic classification describes the faults that 
occur in the order they first appear as we move down $:; the resultant hierarchy of 
faults does not correspond to an ordering by the parameter 6.) By an extension of the 
arguments already used for the first zone and by adding sites to the cluster to suppress 
the rogue sites and any rogue sites thereby created, it can be shown that clusters with 
any of the three types of concavity ( c ) ,  ( d )  and ( e )  required to complete can all be 
found by an examination of $",S. 
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IC Id)  le i 
Figure 2. Concavities that characterize the second zone of (stronger) concavity in $2 (cj 
Two holes of unit area (4-concave). ( d )  Hole of area 2 (3-concave). ( e ) f  fault (I-concave). 
0, Rogue site or spin. 

Concavities that characterize successively higher zones may be reduced along 
similar lines; the work becomes more intricate but involves no new difficulty jn 
Principle. Using these techniques, we have obtained the polynomials 

$17 = m o p 7 +  2349ps+ 2592p9 + 2157p10+ 1542p"+ 801p" 1 - 4 2 6 ~ ' ~  t 1 6 8 ~ ' ~  

+ 42p15+6p16 

$18 = 1014p7 +4299p8+ 6734p9+ 7484p10+ 61 1 lp" +4771p"+ 2858p'jt 1 5 2 4 ~ ' ~  

+ 759p15+ 29OpI6+ 87p 17+ 1 4 ~ ' ~  + p l 9  

(19 = 5310p8 + 13 634p' + 19 416p'O-t 21 81Op l1 + 18 6O8p l2 + 14 442p13+ 10 O29PlC 

+ 5 7 7 4 ~ ' ~  + 3 147p16+ 1 4 5 8 ~ ' ~  + 613p'*+ 198p'9+42p20+6~21 

(20 = 3 4 0 8 ~ ~  +20 469p9+42 963pl0+58 1 6 4 ~ "  + 63 8 0 4 ~ "  + 58 9O2p1j+46 119P" 

+ 34 1 6 4 ~ ' ~  + 21 924p16 + 13 0 7 4 ~ ' ~  + 6864p"+ 3273p19+ 1449fl 
+ 507p" + 1 4 7 ~ "  + 27pZ3 + 3pZ4. (2.11) 

To extend the data we have modified the computer generation of Perimeter 
polynomials used in I to obtain the polynomials that correspond to clusters of a Pen 
Perimeter. It is straightforward to arrange for an enumeration to reject clusten whore 
site perimeter exceeds some number U and to continue with an increasingflumtlerof 
sites to exhaustion; unfortunately this procedure does not generate all the 
4 grouping (6,) since the addition of a site to a cluster may in certain circumstanoes 
reduce the perimeter. 

TO complete 5, by successive addition of sites it is therefore necess? to geDenz 
clusters with perimeters in excess of U and this results in an aPPreaabie loss 
efficiency. The theory and classification of the situations illustrated in figure '!@: 
linked with the theory of concavities we have aIready described. makrng 

further specialized study, we have combined the two techniques and added two 
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Fme 3. Examples of clusters for which the addition of extra sites (0) reduces the site 
perimeter when using the computer cluster generation technique of Martin (1974). (The 
addition of sites marked (+) produces clusters generated in a different sequence under the 
algorithm on which the technique is based.) 

pol ynomials: 

6,=21 372p9+72 256p'O-t 133 3 8 0 ~ ' '  + 179 186p"+ 192 626p13+ 185 22OpI4 
+153 406p15+117 632p16+81 606p17+52419p'8+31 2 8 8 ~ ' ~  

+ 16 461p20+8292p21+3685p22+ 1488pZ3+496pz4+ 128p2' 

+24pZ6+2pz7 (2.12) 
tZ=l1 562p9+93 747plo+247 974p"+417 27Opl2+554 523pl3+6O5 7 6 6 ~ ' ~  

+589 094p1'+514 5O3pl6+411 546p1'+305 656pI8+206 9O4pl9 

+ 134 598pZ0+79 3O9pz1+44 0 1 0 ~ ~ ~ + 2 2  419pZ3+ 10 574pZ4 

+4614p2' + 1743pZ6+579p2'+ 147p2g+27p29+ 3p30. 

From the polynomials through 522 summarized in (2.1), (2.11) and (2.12) the 
@P.nsions of P ( p )  and S ( p )  in powers of q given in the appendix follow by the 
substitutions described in 0 1. 
TO obtain corresponding expansions for the simple quadratic and honeycomb 

l a t h s  we have made detailed configurational studies along essentially similar lines. 

3. Bond problem for the triangular lattice 

FO' the bond problem on the triangular lattice, we are again confronted with the 
*tion that the p grouped polynomials require supplementation if a useful number of 
qgouPd polynomials are to be derived. However for the bond problem the 
haerhion of the clusters required can be made much more systematic and the 
"laiionship with the Ising z grouping is capable of explicit statement. 

We first observe that bond clusters may be divided into two mutually disjoint classes 
mubated in f igre  4). (1) Weak embeddings which are also strong embeddings 
(mnvenientlY called saturated clusters). (2) Weak embeddings which are not strong 

' e  already have a complete listing of the saturated clusters in the connected z 
since the power of z is identical with the bond perimeter; further any 

duster can be formed by deletion of bonds from some saturated cluster 

(conveniently called unsaturated clusters). 
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with a lowerpower of z. This is readily seen by taking as example the termsin $: ofwhh 
there are only two, illustrated in figure 5.  Each corresponds to a saturated cluster of 
bond perimeter 16: the first with bond area 7, the second with bond area 4. (The bond 
areas ( r )  are related to the spin areas (s) by the linkage rule: o = 3s - r.) By removing 
bonds in every way that leaves the sites at least simply connected, we can enumerated 
the unsaturated clusters associated with the site embeddings defined by the verticesof 
(1) and (2). Each bond removed decreases the bond area by unity and increases the 
bond perimeter by unity. By inspection the results for the example are readily found to 
be: 

F i e  5. The connected terms in &p) for the triangular lattice. 

The technique is perfectly general. Thus if G is any graph of s spins strongly embedded 
in a lattice L of any dimension with corresponding lattice constant [G; L1 and lyingin 
&, we will obtain a contribution of the form 

where the Y are combinatorial factors (conveniently calIed yieldfactm). A varietYof 
methods can be developed for calculating yield factors and by an analysis ofthe strong 

we have embeddings on the triangular lattice that contribute to the $' through d';5 

bed 
obtained the 6 through &,,. 

The yield factors are independent of the lattice and the present method can , the 
without modification for any lattice (including three-dimensiond lattices) forwh' 

WioB for connected z grouping is known in detail. We have used it to derive the e? 
the simple quadratic and honeycomb bond mixtures given in the appends- 

Direct enumeration of the ,$ can be achieved along the same general lines 
for the site problem; however the efficiency is much reduced because examp 

described 
1s of bod 
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aeters falling on addition of an extra bond are more numerous. We have however 
to use the method as a check on the polynomials obtained by the yield factor kD 

method. 
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AppeUabr 

(hjicients for expansion of P(p)  = 1 + qeza,qr-l 
- 

Triangular Square Honeycomb Triangular Square Honeycomb 
site problem site problem site problem bond problem bond problem bond problem 

~ ~~~~ 

0 6 4 3 10 6 4 
4 -1 -1 -1 -1 -1 -1 
4 0 0 -3 0 0 -4 
a3 -6 -4 -6 -2 -8 -12 
4 0 -8 -28 0 +6 -34 
4 -27 -23 -36 -9 -48 -76 
pa t 6  -28 -360 +6 +66 -212 
4 -111 -186 -203 -24 -279 -538 
a, +72 +48 -4362 t 2 0  +508 -1192 
4 -534 -1301 +4626 -82 - 1695 -3961 
4 0  +638 +1412 -54347 +IO0 +3788 -7824 
411 -2868 -12292 +I05309 -243 -1 1 495 -24 919 
-41 +5004 +30 384 +326 +28 396 -67 230 
013 -17408 -142441 -781 -79 820 -138 908 
4 4  +36 162 +1182 +200 686 
01s -106 035 -2559 
l16 t233 190 +4496 
41 -626 439 -9231 
4 8  +I4 946 
'19 -27 324 
a, +48 360 
41 -91 099 

Triangular Square Honeycomb Triangular Square Honeycomb 
site problem site problem site problem bond problem bond problem bond problem 

\ 

0 0 0 0 0 +4 
t 6  t 4  +3 +4 t 1 2  +18 

5 +6 +20 +6 -4 -12 +42 
+76 +87 +18 +74 +106 : :;: +loo -54 -18 -104 +614 ' +I38 +764 +2484 +48 +480 +1038 

-24 -196 -3996 -56 -802 +4102 ' +I050 +6480 +58818 +198 +3060 +17790 

4 
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Cbefiients for expansion of S(p)  = 1 +Cb,q'-continued. 
- 

Triangular Square Honeycomb Triangular quare H~~~~~ 
site problem site problem site problem bond problem bond problem 

I- - "-" - -  

-6964 +20852 
bi o +7128 +91524 +1277 136 +522 +25278 +is3606 
bi I -12 366 -240 248 -5 173.485 -888 -62 968 +285 510 
biz 
bi '1 -104004 -3124 -432 864 

-9316 -186 783 -260 bg -918 

+53 418 +1259 944 +2386 +I84996 +1138548 
-- 

bl4 +339 750 
b1s -692 016 

+5446 
-11 292 

b16 +2 090 490 +29 068 
b17 -46 924 
51s +78 896 
b19 -137 014 
b20 +297 280 
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