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Percolation processes in two dimensions III. High density
series expansions

M F Sykes, D S Gaunt and Maureen Glen
Wheatstone Physics Laboratory, King’s College, Strand, London, WC2R 2LS, UK

Received 26 November 1975

Abstract. The derivation of high density series expansions for the percolation probability
and mean cluster size in random site and bond mixtures on a two-dimensiona! lattice is
described. New data are given for the triangular, simple quadratic and honeycomb lattices.

1. Introduction

In this paper we describe the derivation of series expansions required for a study of
random mixtures of sites (or bonds)T in the high density region on a two-dimensional
lattice. We have given a general introduction in a previous paper (Sykes and Glen 1976,
tobereferred to as I) which described the elementary practical theory of the derivation
ofseries expansions valid in the low density region p < p.. The mean number of clusters
K was there expanded in the form:

K(p,q) =Y. (n)=Y. Di(q)p". (1.1)

Weuse K(p, q) to denote the formal expansion in p and g that results from application
of the perimeter method. (Since p and g are dependent variables, other expansions can
be obtained with p and q as arguments; we follow Sykes and Essam (1964) in adopting
'hleabove convention.) In the low density region all the clusters are finite; the formal
Telation

p=) s(n;) pP<pe (1.2)

“ipresses the probability that a site will be black as a sum over the expectations that it
Wil belong to a black cluster of a particular size. If the restriction p <p. is relaxed, the
%im(1.2) becomes the expectation that a site will belong to a finite cluster of black sites.

P approaches unity almost all the black sites will belong to one cluster: the infinite
huster, We denote the density of black sites that belong to an infinite cluster by pe, and
©afinite cluster by pe. Then

pzpf+Poo P>Pc (13)
p =pf P<Pc (14)

th ' |
m;enem’ the observations of this section apply, mutatis mutandis, to bond mixtures; we shall not restate
#esult for bond mixtures.
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716 M F Sykes, D S Gaunt and M Glen

The percolation probability is defined as the probability that a black site belongs ¢
infinite cluster: 0 the

P(p)=po/p=1-p:/p. (15

The method proposed by Domb (1959) for the study of the high density region restsg
the observation that the relation (1.2) can be made universally valid by SImply writng n

=y, s{n) O<p=l. )
Since each {n;) is positive and p;< 1, the infinite summation on the right-hand side js
convergent.
In the low density region, the natural arrangement of the environmental data is the
site grouping or p grouping (1.1). In the high density region the natural arrangement s
a (site) perimeter grouping or g grouping:

K(p. q) =§ &g’ )

We notice a formal analogy between these two data groupings and the two data
groupings that arise in the Ising model of a ferromagnet (Sykes et al 1965,
1973 a,b,c,d,e, 1975 a,b,c, to be referred to as I* to IX*): the p grouping polynomials
correspond to the u grouping or ordering of the data by the number of overmumed spins
regarded as black sites (and denoted by L(z) in II*); the g grouping polynomials
correspond to the z grouping or ordering of the data by the number of energy linkages
between overturned spins and ordered spins (and denoted by (u) in II*). The second
analogy is not exact because the Ising perimeter (the power of z) and the site perimeter
(the power of g) are not identical, but we have found the analogy a useful one and made
it the basis of our treatment.

The specification of clusters contributing to successive p grouped polynomials (1.1)
is a practically convenient one: the number of sites; the specification of clustgrs
contributing to successive g grouped polynomials (1.7) is much less convenient: thesite
perimeter. i

To derive g grouped polynomials we have modified many of the graph theoretc
methods developed earlier for the Ising problem and described in I*-IX* (especially
IV* and VIIT*). The optimum method in each case is dictated by the structure of the
lattice studied. In §§ 2 and 3 we describe the methods we have used for the site 20d
bond problem on the triangular lattice as these examples illustrate the genergl naturé of
the problems encountered. To obtain a useful amount of data for any lattice 1t1s usually
necessary to make a detailed configurational study; for this purpose we have drawn
extensively on data collected for earlier studies of the Ising model. o

The g grouped polynomials (1.7) are the source of high density expansionsin Powfhr:
of g which are obtained by making the substitution p=1—g. For example, 00
triangular lattice:

K(p,q)=pg°+3p°q° +2p°¢"+. ..

and using (1.6) and substituting after the formal differentiation:
pe=poK/ap=q°~q +6¢°~64°+. ..

and on substitution in (1.5) the percolation probability is

P(p)= 1-—q6—6qs+0(q1°) RN

(1.9
1.9

(110)
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Athigh densities, the mean size of finite clusters, defined as the mean number of black
sites connected to any black site that is not in the infinite cluster, is given by a
generalization of (2.10) of I to be

S(p)=lZs2<ns>.' CRTY
pfs

We give the expansions for P(p) and S(p) we have derived for the more usual
wo-dimensional lattices in the appendix. The analysis of these data is given in a
companion paper (Sykes et al 1976).

2. Site problem for the triangular lattice

By regrouping the perimeter polynomials D; through D, (given in the appendix of I)
we obtain the expansion of the key distribution function K(p, q) as a q grouping through
b

K(p.q) =§ &(p)a’

=(p)g°+(3p*)q°+(2p°)q° +(9p° +3p*)q*° +(12p* +6p°)g"’
+(29p* +21p° +14p°+p")q" +(66p° +43p° +30p” +6p®)q "’
+(93p°+153p5+111p7 +69p° +27p° +3p'9q ™ ’
+(298p°+366p” +291p°+166p°+86p'°+24p +2p'?q"’
+(306p°+840p”+957p% +803p° +492p™°+255p' +117p**+27p"?
+3p"g"+. ... (2.1)

Itistobe noticed that the only contributions the polynomials D5, D;3, D1, make to the
l:?st coefficient &6 in (2.1) correspond to a very few clusters of 12, 13 and 14 sites with
Ste perimeter as low as 16; thus only a very small fraction of the summary of the
e!l\_'ironmental situation provided by the D, is made use of at first in the regrouping.
TI}JSineﬂicient use of p grouped polynomials in the derivation of ¢ grouped polyno-
mials is closely analogous to that which occurs in forming the z grouped Ising
W‘Yﬂ(}mials from the corresponding u grouped polynomials. For the Ising model, the x
Bouping is essentially an area grouping, the area being measured by the number of
Oerturned spins (the power of w) and the energy of a cluster of n overturned spins
@not exceed 31 ; the length of the u grouped polynomials therefore increases at most
erly with n. In contrast the z grouping is an energy grouping and the area of a
nfiguration with energy linkages (the power of z) increases as m?; the length of the
tHouped polynomials increases quadratically. Likewise in the present context, the site
Penmete'r of a cluster of n sites cannot exceed 2n +4 and the growth of the p grouped
lJoly“"}mals is therefore at most linear with n. In contrast the site area of a cluster of
in:;d Site perimeter m increases as m’; the length of the g grouped polynomials
tses quadratically.
0 make the analogy more specific, we contrast the two polynomials

£12=29p* +21p° +14p°+p’ (2.2)
bo=19%p>+5u+21p° + 14p°+p". (2.3)
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In (2.3) ys is the corresponding z grouped polynomial for the triangular latice tak
from IV*. The coefficients of the higher powers of p and u are seen to be identics: if:n
delete from i, contributions from clusters with more than one COmponen; ang
substitute for (2.3) the connected z grouping

s=29u* +21u° +14p5+ 47 24
the identity is complete. However the next polynomial
$0=66u°+42u°+30u" +6u° @5

is not identical with
§13=66p5+43p6+30p7+6p8 . 26)

but differs only in the coefficient of p®. The source of small discrepancies can be
explained on the basis of the graph theoretic description we have given of the ¢
polynomials in VIII*. The higher powers of p are there shown to correspond to
connected and essentially convex clusters. The highest power of u always corresponds
to an absolutely convex cluster. For this convex region (characterized by near maxi-
mum powers of u and defined more precisely in VIII*) there exists a simple relation
between the site perimeter (o) and the Ising perimeter (w=power of z°). From
theorem (3.3) of VIII*:

oc=w+3 | Al

and this relation can be used to transform the result (2.5) of VIII* for the general
pattern of the convex end of the ¢ polynomials into the general pattern for the convex
end of £ polynomials:

bom =p N1+ 14p7 +87p 4. )

Eome1=p " T (6+42p7 +216p 77+, . )

Esmir=p " (3 42Tp +147p 72+, ) .
Esmiz=p " (2+24p71+128p7%+.. ) '

bomis=p B3 +27p  +147p72 4. )

Eomes=p M6+ 42p7 +216p 72+, ).

Following closely the ideas of VIII*, we define an (essentially) convex cluster as 0né
for which (2.7) holds. The more general resuit

o<w+3

29

enables the concavity of a cluster to be characterized by writing
N (2.10)
nd describe a cluster 'as
divide into two classes

We adopt the value of § as a measure of the concavity a
§-concave. With this convention, clusters that contribute to £,
(a) convex clusters in the Ising polynomial ¢ _3;
(b) & concave clusters in the Ising polynomials ¢35 for all 8 >(_). (a) the
The enumeration of these two classes corresponds to two operations: fgrwnmve
deletion of concave terms from ¢ _s; for (b) the selection of all the recl‘llfedijl order
terms in all ¢S _5. 5. The second task involves an inspection of the y*in ascendifé
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and this is inconvenient as the amount of configurational information increases rapidly
with each new ¢° while the amount of significant information in the present context
becomes very small. We therefore recast the problem in such a way that the required
information can be found from an inspection of all ¢ with s<o~3. The method is
based on a classification of the concavities that occur first in practice.

Asthe power of p (or u) declines from the absolutely convex end we can define a first
zone of mild concavity where departures from concavity correspond to single holes and
faults of the type illustrated in figure 1. If the objective is £, clusters with a concavity of

Figure 1. Concavities that characterize the first zone of (mild) concavity in ¢, (a) Simple
hole of unit area (2-concave). (b) An f fault (1-concave). O, Rogue site or spin.

either type must be deleted from ¢;._; and clusters with a concavity of type (a) selected
from yr;,, those with a concavity of type (b) from ¢._,. The failure of the equality in
(2.7) is due to the presence of a perimeter site (or spin) marked in the figure with an open
circle and which we call a rogue site. If, for any cluster with a concavity of type (a), the
rogue site is removed by adding an extra site to the cluster in its place, the new cluster so
formed must lie in ¢, _3 (or i;..,): that is one below rather than two above originally. In
other words the holes that occur in S_; can be regarded as lying in ¢;,_, and found by
an examination of this. The task is further simplified by the fact that the presence of the
hole (a) implies that the new in-filled cluster is all the more likely to be convex; the
number of possible holes that lie in #_, can then be determined by using the formula
for the number of internal points given in VIII* (equation (2.4)).

If an f fault (b) occurs in ¢, then, on adding an extra site to the cluster to suppress the
rogue site, a hole of type (a) will result (in ¢/5,,) and a new rogue site will be created; on
in-filling again we obtain a cluster in ¢, _,. Since for £, we require f faultsin ¢/, we can
instead examine .., for external obtuse angles in the contour.

In summary, the convex terms required for &, lie in ¢;—3; the details of clusters that
constitute the first zone of mild concavity and contribute to £, can be obtained by an
analysis of 5._,.

A second zone of somewhat more severe concavity we define by the presence of the
concavities illustrated in figure 2. (This schematic classification describes the faults that
occur in the order they first appear as we move down y,; the resultant hierarchy of
faults does not correspond to an ordering by the parameter 8.) By an extension of the
arguments already used for the first zone and by adding sites to the cluster to suppress
the rogue sites and any rogue sites thereby created, it can be shown that clusters with
any of the three types of concavity (c), (d) and (e) required to complete &, can all be
found by an examination of ¢ ._s.
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Figure 2, Concavities that characterize the second zone of (stronger) concavity in ¢, (¢}
Two holes of unit area (4-concave). (d) Hole of area 2 (3-concave). (e) f* fault (1-concave),
O, Rogue site or spin.

Concavities that characterize successively higher zones may be reduced along
similar lines; the work becomes more intricate but involves no new difficulty in
principle. Using these techniques, we have obtained the polynomials

&17=1290p" +2349p°+2592p° +2157p'°+1542p"* +801p'2 +426p** + 168p™

+42pls+6p16
&15=1014p" +4299p°+6734p° +7484p"° + 6111p* 1 +4771p'2 +2858p" +1524p"

+759p"°+290p*°+87p" "+ 14p™*+p*°
&19="5310p® +13 634p°+19 416p'°+21 810p* + 18 608p '+ 14 442p"+10029p"
+5774p"> +3147p +1458p "7 +613p %+ 198p '+ 42p»+6p
20=3408p%+20 469p° +42 963p*°+58 164p*' + 63 804p'>+58 902p**+46 119"
+34164p"° +21924p™ +13 074p"7 +6864p 5 +3273p"* +1449p"
+507p% +147p2+27p% +3p*, @1

To extend the data we have modified the computer generation of Pe”m,ete;
polynomials used in I to obtain the polynomials that correspond to clusters of 2 g;;:e
perimeter. Itis straightforward to arrange for an enumeration to reject f:lusters ;’er S
site perimeter exceeds some number o and to continue with an increasing num the
sites to exhaustion; unfortunately this procedure does not generate all t'he glusterst ;nnw‘
q grouping (£,) since the addition of a site to a cluster may in certain Circums
reduce the perimeter.

To complete £, by successive addition of ble loss of
clusters with perimeters in excess of o and this results in an éPPTeC‘a 3is clostly
efficiency. The theory and classification of the situations illustratec_i in figure 2 1 2king &
linked with the theory of concavities we have already described. BY I:funher
specialized study, we have combined the two techniques and added t¥

| ‘ erate
sites it is therefore necessary to gen



Percolation processes in two dimensions III 721

Figure 3. Examples of clusters for which the addition of extra sites (O) reduces the site
perimeter when using the computer cluster generation technique of Martin (1974). (The
addition of sites marked (+) produces clusters generated in a different sequence under the
algorithm on which the technique is based.)

polynomials:

£,=21372p° +72256p"°+133 380p™! +179 186p™* +192 626p'*+185 220p™*
+153406p"5+117 632p"°+81 606p'” +52 419p**+31 288p"*
+16 461p°° +8292p* +3685p™ +1488p™° +496p™* +128p™
+24p*°+2p” 2.12)

bo=11562p°+93 747p'%+247 974p"* +417 270p'> + 554 523p** + 605 766p*
+589 094p"°+514 503p'S+411 546p*" +305 656p'5+206 904p"
+134 598p°°+79 309p™' +44 010p™ +22 419p> +10 574p™
+4614p% +1743p% + 5797 +147p™ +27p +3p™.

From the polynomials through &;, summarized in (2.1), (2.11) and (2.12) the
epansions of P(p) and S(p) in powers of g given in the appendix follow by the
substitutions described in § 1. .

To obtain corresponding expansions for the simple quadratic and honeycomb
latices we have made detailed configurational studies along essentially similar lines.

3 Bond problem for the triangular lattice

F.°r ﬁ}e bond problem on the triangular lattice, we are again confronted with the
Stuztion that the p grouped polynomials require supplementation if a useful number of
§ gouped polynomials are to be derived. However for the bond problem the
&terization of the clusters required can be made much more systematic and the
ma“(’mhip with the Ising z grouping is capable of explicit statement.
Wefirst observe that bond clusters may be divided into two mutually disjoint classes
Wrated in figure 4). (1) Weak embeddings which are also strong embeddings
mﬂveni_e“ﬂy called saturated clusters). (2) Weak embeddings which are not strong
dings (conveniently called unsaturated clusters).
¢ already have a complete listing of the saturated clusters in the connected z
g since the power of z is identical with the bond perimeter; further any
frated cluster can be formed by deletion of bonds from some saturated cluster
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{a) (6]

Figure 4. Examples of bond clusters on the triangular lattice. (a), (b) saturated clusters, {¢)
unsaturated cluster.

with a lower power of z. This is readily seen by taking as example the termsin s of which
there are only two, illustrated in figure 5. Each corresponds to a saturated cluster of
bond perimeter 16: the first with bond area 7, the second with bond area 4. (The bond
areas (r) are related to the spin areas (s) by the linkage rule: w =3s— r.) By removing
bonds in every way that leaves the sites at least simply connected, we can enumerate al
the unsaturated clusters associated with the site embeddings defined by the vertices of
(1) and (2). Each bond removed decreases the bond area by unity and increases the
bond perimeter by unity. By inspection the results for the example are readily found to

be:

) 6(p’q" )1 +7(q/p)+19(g/p)*+21(q/p)*). @3.1)
@ 12(p*q")[1+3(q/p)]. (32
) >/ ; ; \ {2) :
6N 12{\

Figure 5. The connected terms in y§(x) for the triangular lattice.

The technique is perfectly general. Thusif G is any graph of s spins strongly emb‘?dde,’d
in a lattice L of any dimension with corresponding lattice constant [G; L] and lying s
W, we will obtain a contribution of the form

[G; LIp*™°¢**[1+ Yi(q/p) + Yala/p)*+.. ] 63

where the Y are combinatorial factors (conveniently called yield factors?. A variety :f
methods can be developed for calculating yield factors and by an analysis ofc the strh:vf
embeddings on the triangular lattice that contribute to the ¢° through ¥1s W&
obtained the £ through &s,.

The yield factors are independent of the lattice and the present mfathod can;ech“i?;
without modification for any lattice (including three-dimensional lattices) for wions o
connected z grouping is known in detail. We have used it to derive the expans
the simple quadratic and honeycomb bond mixtures given in the appeﬂfi‘x- described

Direct enumeration of the ¢ can be achieved along the same general hne? fbosd
for the site problem; however the efficiency is much reduced because examp es
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rimeters falling on addition of an extra bond are more numerous. We have however
peen able to use the method as a check on the polynomials obtained by the yield factor

method.
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Appendix
Coefficients for expansion of P(p) =1+q°Sa,q"™"

Triangular Square Honeycomb  Triangular  Square Honeycomb
site problem ° site problem  site problem bond problem bond problem bond problem
§ 6 4 3 10 6 4
o -1 » -1 -1 -1 -1 -1
g 0 0 -3 ‘ 0 0 -4
g —6 -4 -6 -2 ~8 -12
a 0 -8 -28 0 +6 -34
o =27 ~23 -36 -9 —48 -76
A +6 ~28 —360 +6 +66 -212
4 ~111 —-186 —-203 -24 -279 —-538
4 +72 +48 —4362 +20 +508 -1192
) -534 -1301 - +4626 -82 —-1695 ~-3961
o +638 +1412 ~54347 +100 +3788 ~7824
CH 2868 —12292 +105 309 ~243 —11495 -24 919
2 +5004 +30384 +326 +28 396 -67 230
o3 -17408 ~142 441 ~781 —79 820 —138908
by +36 162 +1182 +200 686
o5 —~106 035 —2559
G +233 190 +4496
8 -626 439 ~0231
L0 +14 946
b —27324
by +48 360
K ~97 099
e,
Coeffcients for expansion of S(p)=1+32bq’
\
Triangular Square Honeycomb  Triangular Square Honeycomb
site problem  site problem  site problem bond problem bond problem bond problem
b 0 0 0 0 0 +4
t +6 +4 +3 +4 12 +18
i, +6 +20 +6 —4 -12 +42
k +30 +76 +87 +18 +74 +106
i +24 +100 -54 —18 -104 +614
b +138 +764 +2484 +48 +480 +1038
8 =24 ~196 —3996 -56 —-802 +4102
+1050 +6480 +58 818 +198 +3060 +17 790
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Coefficients for expansion of S(p) = 1+Z2b,q'—continued.

Triangular Square Honeycomb  Triangular Square Honeyeom
site problem  site problem site problem  bond problem bond problem bond ;::lem
b ~918 —9316 —~186 783 —260 —6964 420852
bio +7128 +91 524 +1277136  +522 +25278 +183 606
by, ~12366 —240248 ~5173485 —888 ~62 968 +285510
b, +53418 +1259 944 +2386 +184 996 +1138 548
by ~104 004 -3124 432 864
by +339750 +5446
b15 —692 016 —11 292
bis +2 090 490 +29 068
b7 46924
bis +78 896
by -137014
boo +297 280
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